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Figure 1: A picture of FacetRules displaying groups formed from user selected seeds and rules describing them. UI components
are: (1) table with retrieved group items colored in pink and blue, (2) configurable scatterplot providing a 2D representation of the
data, (3) controls for the scatterplot, (4) interactive display for rules describing the groups highlighted in the table and scatterplot,
and (5) controls to adjust the similarity threshold and relearn groups.

ABSTRACT

Domain experts, owing to their knowledge and experience, develop
an intuition for patterns in the data. They may know, for example,
certain points of interest. However, they may not know exactly how
to characterize what makes these data special. In our work, we start
from these points of interest as seeds to derive groups of similar
points automatically based on surrounding cluster structure. To aid
characterization, we provide descriptive rules as an interpretable
model to describe the groups. We explain this technique and present
a prototype to demonstrate with a usage scenario how the technique
helps the user with data exploration by discovering and describing
groups in the data.

Index Terms: Human-centered computing—Visualization—
Visualization theory, concepts and paradigms

1 INTRODUCTION

Discovering and understanding groups in datasets is an important
part of sensemaking. Domain expertise and intuitive understanding
of a dataset helps in recognizing certain data points of interest, but
without being able to describe the reasoning for this preference, the
generalizability is limited.
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The expert may know examples of a certain pattern, but not how
to define it well enough to discover more. It is not possible to verify
the intuition or say if the perceived pattern exists without a bigger
set of examples. If we can expand the set of examples and find other
similar data points, we can identify and describe the pattern better.
Inspired by a real-world problem of a collaborator, we consider the
problem of starting from the few seeds of interest, retrieving other
similar data points to form groups and then characterizing the groups
with descriptive rules. We propose using hierarchical clustering to
find similar data points, and letting the user control the similarity
between their points of interest and the retrieved groups. Finally,
descriptive rules are automatically learned to characterize these
groups by what ranges of which variables are most discriminatory.

In this paper, we explore and demonstrate this technique with a
prototype. The prototype provides an interface for specifying data
points of interest and iteratively relearning groups, and thus rules,
with different similarity thresholds. Specifically, our contributions
are: (1) the FacetRules technique of starting from seed points of
interest and faceting the results of a similarity search by creating
distinct, automatically extended and described groups of related
points, (2) the FacetRules prototype implementation demonstrating
the FacetRules technique, and (3) a usage scenario showing how this
tool assists in discovering and describing groups in data. We pro-
vide additional analysis of the FacetRules technique with machine
learning experiments and feedback from the domain experts who
inspired the work.

2 RELATED WORK

Existing work uses various approaches for retrieval of similar items,
as in example-based search in which instead of formulating a query,



the user provides examples to search with and expects similar items
as a result. Lissandrini et al. [12] provide a detailed list of existing
example-based methods, including techniques used for different data
types and algorithms. S4 [16] and the work by Weiss et al. [27] take
examples from the user and discover the queries that would have
resulted in the provided examples through reverse engineering. An-
other tool, FlatFinder [25], uses example critiquing. It shows items
based on user provided preferences and then iteratively updates the
results based on user feedback. In contrast to the exiting methods,
FacetRules finds similar items by leveraging the substructure in the
data identified by hierarchical clustering. The substructure in hier-
archical clustering gives us the ability to learn groups for different
levels of similarity between items.

Another related area is interactive cluster refinement, as in
ClusterSculptor [14], Cluster Sculptor [3]) and Clustrophile 2 [6].
FacetRules is not meant to craft a clustering through user feedback,
but rather we use hierarchical clustering [29] to retrieve items similar
to user-specified items based on the local cluster sub-structure (see
Sect. 3).

Rules help characterize patterns in data and are an interpretable
model [?]. They have been used in tools like RuleMatrix [13] for
helping users understand machine learning models, and have been
implemented with different machine learning backends [10, 19, 24].
Our rules generation component uses an adaptation of DRIL [4],
which uses Quinlan’s decision-tree-based rule algorithm, C5.0 [18].
The C5.0 algorithm includes optimizations for rule list generation
when compared with other decision tree algorithms like CART [23]
and ID3 [17]. This algorithm was also shown in DRIL [4] to have a
significant performance advantage compared to SBRL [28] for an
interactive context.

FacetRules is a Human-In-The-Loop (HIL) technique, iteratively
relearning using interactions on the visual interface as parameters
for the backend machine learning algorithm. The HIL system, its
framework, benefits, and other concepts have been discussed in
numerous works [1, 7, 11, 21, 22].

3 FACETRULES

The motivation for FacetRules comes from a conversation with a
collaborator, a university online-learning management team with
data about class offerings at the university. From their expertise and
due to their access to additional information, they know examples of
classes that are doing well. But they do not know the full set of good
classes, nor can they define what constitutes a class that is doing
well or what the signs of trouble are. They want to expand their
examples of good classes, understand what works, and eventually
use that understanding to identify classes that need help in real time.
From their application, we recognize the need to discover groups
of similar data points to a small seed set, and to provide tools for
understanding what defines these groups.

The first part of the goal is to extend a small selection with similar
items. We propose using hierarchical clustering and leveraging its
innate similarity structure to find similar data and group them simul-
taneously. For the second component, characterizing these groups,
we propose using automatic descriptive rules (human-interpretable
models [8]) to provide combinations of variable ranges that distin-
guish group members from the rest of the dataset.

3.1 Hierarchical Clustering for Groups Formation
The FacetRules technique takes a small point selection from the user
and forms groups around these seed points. We use hierarchical
agglomerative clustering [29] to learn groups based on a selection.
The configuration details of the algorithm are mentioned in Sect. 5.
Hierarchical clustering builds a tree structure of relationships be-
tween all data points. Starting from each data point as an individual
cluster, it iteratively merges the closest clusters until all the data
is merged into one single cluster. The resulting tree representation

of clustering records the substructure of each cluster down to the
individual data points.

This tree can be examined to find the relationships between data
points from different levels of the tree. For example, for a given pair
of data points, their closest common ancestor in the tree corresponds
to the merge step of the clustering when they became part of the
same cluster. The algorithm also keeps track of the distance between
the clusters formed at each merge. The higher the merge distance,
the less similar the clusters being merged. This feature is commonly
used to make determinations like the appropriate number of clusters
in the data. It serves our purposes well in this work because it can
be used as a natural stopping point for expanding data from user
selections. For each selected data point, x, we traverse through the
tree to find the largest subtree including x such that all nodes are
within a user-specified threshold of distance from each other. That
subtree is returned as the group of items similar to x. These groups
are simply merged when they overlap, because if two user-selected
nodes are close enough relative to the threshold, they will be in the
same subtree anyway.

The hierarchical clustering’s recording of cluster substructure
provides a natural organization of which selected items are kept
separated vs. joined. If we chose related points based on
similarity alone, we could miss close, relevant items. Fig. 2
provides an example. The data are shown as blue dots and
the red circles are used to encode the hierarchical clustering
with a containment metaphor: each circle contains a cluster,
and the nested structure can be seen with nested circles.

Figure 2: Illustra-
tion of hierarchical
clustering and how
nearest-neighbor
relates to our ap-
proach of finding
similar items using
the HAC Tree.

Imagine a query point and a proximity
neighborhood around it, shown with the pur-
ple circle, which would be the equivalent
of querying for nearest neighbors. Three
points are included in the purple circle, but
the immediate neighbors of its outer points
are missed. Using the hierarchy to expand
the selection would result in a bigger group
that includes these points, which could be
closely related to the query due to the way
they fit in to the local structure of the data.

One possible drawback is that if the user
selects a single outlier with no neighbors
except a large cluster, our method could add
many points to the selection because the
outlier does not join the neighboring cluster
until late in the clustering process. However,
a single outlier will not likely be sufficient
to generate rules on its own, and providing
rules may be counterproductive since there is no robust pattern. An
analysis with participants to judge the effectiveness of our current
group expansion compared to distance-based, or other methods,
remains future work.

We use the merge distance at the n/2th merge, where n is the
size of the data, as the default threshold for group retrieval in our
tool. Since there are n−1 merges total, at the halfway point, most
data points that have reasonably close neighbors would have merged
to form a cluster. This is a desirable default so that when forming
groups, most data points selected will return at least one other close
neighbor, and at the same time the groups are showing only the
similar items instead of expanding too far. The tool automatically
increases the threshold to retrieve at least one similar item when there
is none within the specified threshold, ensuring a group retrieval
even for anomalies.

A slider in the UI lets the user update the threshold value. The
user-system collaboration ensures that the tool always returns a
group for the user, but leaves the user in control of dictating prefer-
ence for group size. As the user increases the threshold, the algo-
rithm walks further up the tree. It picks a cluster with a higher merge



(a) Initial Display Dataset screen. UI components are: (1) controls to upload, display dataset and show similar items, (2) table displaying
dataset items, (3) scatterplot showing a 2D representation of the data and (4) controls for scatterplot.

(b) Scatterplot from Usage Scenario
plotting two attributes and colored
by a third.

Figure 3: FacetRules UI Components, as used in the Usage Scenario (Sect. 4.1)

distance, formed later in the tree formation process by the merging
of sub-clusters. This results in fewer groups each with more items.
Conversely, decreasing the threshold will return smaller groups and
in some cases, reveal sub-groups within a retrieved group.

3.2 Rule Generation for Each Group
Each time a new set of groups is learned, or a group is extended by
updating the threshold, rules are generated to describe each retrieved
group compared to the rest of the dataset. The rules generation
component first labels the items in the group with class 1 and the rest
of the dataset with class 0. The labelled dataset is then provided to a
supervised, tree-based rules generating algorithm by Quinlan [20].
The algorithm learns rules to differentiate between the in-group
and outside-group classes so that the rules describe what makes
in-group items different from the rest of the data (i.e., to describe
the group). Each rule consists of one or more conditions that specify
the attribute value ranges of the class being described. The rules, in
the raw form as they are generated by the algorithm, are not ideal
for directly presenting to a non-expert user. The preparation of the
rules for the interface, like parsing the learner’s output, removing
duplicate clauses and sorting positive rules proceeds as in Cao et
al. [4] and with the same performance characteristics. In the case of
high-dimensional data, if a group requires many variables to describe
it accurately, it may result in a large attribute list. However, since the
technique optimizes for a parsimonious representation, unneeded
attributes will be ignored and the description will use few variables
when possible.

4 PROTOTYPE AND DESIGN BY USAGE SCENARIO

In this section, we discuss the interface of the FacetRules prototype.
We use a usage scenario to describe the interface features in detail,
while explaining design considerations1.

4.1 Usage Scenario
Amaya is researching factors that influence citizen perception of
their country. She is using the world happiness dataset from Kaggle
with data about countries for the year 2019 [15]. Amaya is interested

1Video of prototype walk-through is included in supplemental materials.

in two countries: Singapore and Finland, where citizens have a
positive perception about their country. She wants to find other
similar countries and understand the contributing factors.

4.1.1 Display Dataset
She uploads the dataset into FacetRules and sees the first mode,
Display Dataset, with a screen similar to Fig. 3a. The table provides
a detailed view showing attribute values for each country and the
scatterplot shows the relationships in the data in 2D. The control
panel for the scatterplot provides the option to pick between three
dimension reduction techniques: MDS, T-SNE or UMAP. Or instead,
she can use dataset attributes for the x and y axes. She can also
choose to color the scatterplot by values of an attribute. Since no
projection from high dimensions to 2D can be perfect, we give the
user options. These are easily ignored for users who are unfamiliar
with projection types, but may be appreciated by those who are. The
ability to map data attributes to axes or color helps once attributes
of interest are known in later steps.

Amaya keeps the default MDS view on the scatterplot. She works
from the table. Hovering over the row for Singapore highlights the
corresponding dot on the scatterplot. On the scatterplot, she hovers
over other dots around Singapore, looking for similar countries.
Mouseover causes the table to highlight countries, showing the
name and making the attribute values readily available. Now she is
ready to expand her countries of interest and selects Singapore and
Finland on the table and hits Show Similar Items.

4.1.2 Show Similar Items
The prototype interface switches to its other mode, Show Similar
Items, to display the two groups it has returned, as seen in Fig. 1.
Group 0 is countries similar to Singapore, colored in blue. Group 1
is countries similar to Finland, colored in pink. There is a message
under the similarity threshold slider stating that the backend had
to increase the threshold in order to find similar countries for Fin-
land. However, the slider was not updated as Singapore’s group was
retrieved using the default threshold of 0.5. The threshold can get
adjusted in the backend from the user’s preference, during the group
expansion process to prevent the frustration of manually increasing
the threshold to find groups for isolated data points. If only one



group is discovered, the threshold slider will be adjusted to reflect
this because a lower value is not useful. However, when more than
one group is formed, if the threshold had to be automatically updated
and the new thresholds are different for the groups, we do not move
the slider. We leave it at the user’s selection and make it plain to the
user by writing a message right below the slider explaining the ad-
justment including which of their selected points required threshold
adjustment to build a suitable group.

Amaya now explores the discovered groups and the rules that
describe them. The two groups are shown in the same colors, blue
and pink, across the table, scatterplot and rule list. In the rules tab for
each group, there is a description of what differentiates that group
of points from the rest of the data. Each rule has a box containing
its conditions on individual attributes, e.g., Healthy life expectancy
> 0.987. The condition is listed and a range bar shows the rule’s
range in context of the full data. Rules that describe points that are
in the group, positive rules, use blue in their range display. Rules
that exclude points from the group, negative rules, use gray.

Amaya looks at the the positive rules for Group 0. The group
retrieved for Singapore has Healthy life expectancy higher than
0.987 and Perception of corruption2 higher than 0.343. Hovering
over the rule Rule ID: 0 for Group 0 highlights the data points the
rule represents both in the table and on the scatterplot with a red
outline. Countries in Group 0 have high Healthy life expectancy and
Perception of corruption according to the rules. This makes Amaya
wonder about the relation between these two variables. Amaya
changes the x-axis and y-axis on the scatterplot to see Healthy life
expectancy against Perception of corruption, as shown in Fig. 1
(3). The countries in this group also have higher GDP per capita,
so Amaya wants to see how GDP is correlated with Healthy life
expectancy and Perception of corruption. She uses GDP per capita
as the attribute to Color by on the scatterplot. As seen in Fig. 3b, she
is able to see that the countries with higher Perception of corruption
and Health life expectancy also have high GDP per capita. She
explores the group for Finland similarly. The tool has learned that
for Group 1, Perception of corruption is between 0.31 and 0.343.

Now Amaya is curious what other countries are similar to Singa-
pore and Finland at higher thresholds. She iteratively increases the
threshold and hits Recalculate Similar Items. At a high threshold,
the tool merges group 0 and group 1 into a single group including
both the countries. The scatterplot colors the dots representing the
new group and new rules are shown for this group. She recognizes
that her initial hypothesis that these two countries are similar is
reasonably well grounded in the data because with a group of eight
countries, they are included together. She also understands much
better what particular characteristics these countries have, as well
as how this group breaks down to two smaller, related groups with
slightly different properties.

5 IMPLEMENTATION

The prototype was built using the LIHCA software platform [5]
which includes a Python backend running a Flask server, and a
front-end Javascript API. The back and front ends communicate
through Javacript APIs. The backend handles the machine learning
and data storage functionalities. Group formation functionality is
implemented using agglomerative hierarchical clustering from scipy
[26]. The prototype supports both numerical and categorical data.
We choose the distance function options in scipy for clustering based
on the data type of the attributes. For non-categorical data, we use
the Ward variance minimization algorithm for calculating distance
between clusters and the euclidean distance function. For categorical
data, we use the nearest point algorithm and Jaccard’s distance. The
group formation component has the same performance constraints
and data limitations as hierarchical clustering. The clustering can be

2This Perception of Corruption variable actually represents trust, so
higher is better.

performed ahead of time, streamlining interaction speed. We adopt
code provided by Cao et al’s DRIL [4] for generating rules.

6 EVALUATION WITH ML EXPERIMENTS

We evaluated the FacetRules technique of expanding a seed selec-
tion and describing it using rules by conducting experiments on two
datasets with simulated user selections. We used a subset of the Dow
Jones Index dataset [2] and a preprocessed FIFA players dataset [9].
The Dow Jones Index dataset has weekly data for 30 stocks across
two quarters. For our experiment, we used data from one week,
with 30 instances and 14 attributes. The FIFA players dataset was
preprocessed to remove missing values and duplicates, convert string
values (e.g., net worth) to numerical values, and remove irrelevant
attributes. We picked the players whose contract was valid at least
until 2021, resulting in 1272 instances and 36 attributes. We simu-
lated seed point selection with three different thresholds for both the
datasets. We used the thresholds 0.5, 0.7 and 0.9, the tool’s default
threshold and two higher values to observe performance as groups
grow. We ran the experiment with each data item in the dataset as an
individual seed. We suggest users include more than one point, but
the number of combinations of 2 is much larger, and single points
are sufficient for the experiment. We recorded properties of the data
points, numbers of items in the groups, numbers of rules generated,
rule properties, and the performance metrics accuracy, precision and
recall for the rules3. We use recall as the performance metric to
determine the quality of rules because it measures how many of the
actual positive classes the model was able to correctly predict. The
labels for learning rules are predominantly negative since rules are
learned for a group against the rest of the data. We are particularly
interested in the ability of our technique to detect positive cases, i.e.,
the group items, so recall is the appropriate performance measure.

With the experiment, we wanted to evaluate if users can expect
accurate groups and rules from their seed points. We assess how well
the learning works based on relevant properties of the data (isolation
scores) and parameters provided by the tool (threshold). For the FIFA
dataset with around 1.3k items, we found that small groups (less
than 5 items) generate rules less often than bigger groups. In our test
with single point seeds, users got rules 42 percent of the time. When
they did get rules, they were good quality, with high recall shown in
Fig. 4 (a). Recall was positively affected by the threshold value since
there were bigger groups at higher thresholds resulting in better rules
and more cases where valid rules could be generated, shown in Fig. 4
(a). The contour plot shown in Fig. 4 (b) illustrates that the density
of points in the neighbourhood of the selection positively affects
recall. The isolation score on the x-axis measures how isolated a
selected point is from other neighboring points. Isolation score is
negatively associated with its neighborhood’s density [30].

Figure 4: Plots from our machine learning experiments (see Sect. 6):
(a) histograms faceted by threshold show the distribution of recall
of the rules for threshold values, (b) contour plot of the relationship
between recall (y-axis) of the rules generated and isolation score of
the seed point for the threshold 0.9.

3The raw experimental results and graphs are included in the supplemen-
tal materials.



7 EXPERT FEEDBACK

We conducted a tool evaluation session with the domain experts
who inspired this work to gather feedback about the FacetRules
technique and the usability of the prototype. The participants were
three experts (P1-P3) from the university learning management team,
each with excellent domain knowledge in different aspects of class
offerings. First, we gave them an overview of how the prototype
works, while answering questions4. Then they used the prototype
to explore a preprocessed subset of their class offerings data. They
shared their screens with us and were encouraged to think aloud
or ask questions when necessary. After using the prototype, they
answered some questions about their experience.

All the participants believed that the tool gave them interesting
insights, some unexpected, about the classes they explored. All
of them started by inspecting attribute values for classes and then
selecting for expansion either ones that stood out or that were already
familiar. The scatterplot’s MDS view helped them discover items
similar to their seeds before learning groups. Overall, the groups
formed made sense to them. Looking at unexpected groupings, the
rules and table helped them quickly understand how courses were
related. In one case, the grouping and domain knowledge helped P1
explain a pattern beyond what was captured in the data. Looking at
classes from different disciplines grouped together, P1 recognised
that the classes had a common instructional designer. “I didn’t expect
to see [those classes] from such different disciplines be so similar in
how they use d2l5. That to me was very interesting . . . although they
do have the same support person in our office. So maybe there is
like a link there, underlying,” P1 noted. For an unexpected group, P3
noted that, “There could be pedagogical or instructional elements to
that. That would make it more useful to put those courses together.”

After the groups were generated, all the participants used the scat-
terplot to check if items in the groups were close to each other and
the rules helped them understand why classes were grouped together.
For P3, rules helped confirm intuitions. When rules were not gener-
ated for groups with three or fewer elements, P1 and P3 expanded
groups by increasing threshold. After learning how threshold value
affects group size, P3 decreased the threshold and discovered sub
groups within a retrieved group.

Participants demonstrated varying levels of understanding and
engagement with different components, but all of them expressed
their belief in the utility of the technique and the tool. They dis-
covered groups and patterns in their data that they would not have
otherwise found. They also understood the patterns discovered and
how the classes grouped together were similar. Their wishlist for
new features included the ability to bookmark items of interest, ex-
port generated groups, rules and scatterplots, and UI features for
sorting and filtering based on attribute values. Future work includes
incorporating their feedback into a tool that matches this workflow.

8 CONCLUSION

In conclusion, this paper presents a technique, FacetRules, which
takes a user selection of data points, expands the selection to a set
of related groups, and then automatically characterizes the groups
with descriptive rules. We introduce a prototype to demonstrate
this process, and use it to present a usage scenario. In the example
scenario, we demonstrate how this technique can assist a user in aug-
menting points of interest and learning to characterize related data
with descriptive rules. Our ML experiments show that rules learned
for the generated groups were generally good quality, with high
recall. Feedback from domain experts suggest that the technique
helped them gather better insights.

4The questions asked are included in supplemental materials.
5d2l is the Learning Management System used at the university
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