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Fig. 1: The DocTable prototype. (a) A navigation bar to select between different visualizations. (b) A visualization pane that
displays the selected force-directed visualization. (c) The table panel where users interact with model-building, including: (d) a
button to trigger a model update, (e) a table view with a row per document, ordered based on relevancy to the model(s), (f) a column
for each user model showing user markings or machine estimation of relevance per document, and (g) an export to .csv button.

Abstract— People working today with text data in any domain must develop understanding based on more documents than they
can directly read. Tools exist that take advantage of visual analytics for a variety of text data tasks, including for technical experts,
particularly in certain domains like intelligence and law. There is a missed opportunity to apply human-in-the-loop (HIL) machine
learning to assist a general audience with text analysis tasks over large corpora that are difficult with visualization alone. In this paper,
we propose an alternate approach to efficient sensemaking over document corpora, designed for users without technical expertise
or training. We use a table-based interface, where the primary means of providing feedback to the machine is interactions with a
data table view. This format is familiar to many, and augments the ability to tag documents into user-defined categories with machine
learning that automatically predicts categories for additional documents. Marking only a few documents enables the machine learner to
suggest automatic labels for the rest (with uncertainty scores for the predictions), and to reorder the table to reflect an integrated mix of
the category models. Finally, interactive, force-directed layouts of topics and documents based on the models assist in sensemaking
for workflow that scales beyond the practical limits of a table. To validate the technique, we present a prototype human-in-the-loop
machine learning system, DocTable. We evaluate this technique with machine learning experiments that demonstrate the quality of the
backend’s response to expected user inputs, a usage scenario to demonstrate its use on real world data, and a case study of expert
feedback from our journalist collaborators.
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Humans have always encountered the problem of analyzing information
in order to make informed decisions, but in the modern world, the
scale of information has increasingly outstripped human capacity to
accurately and quickly discern patterns. Within this context, machine
learning has received extensive attention for its ability to quickly and
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efficiently model large datasets. Data visualization has also emerged as
a powerful tool for gaining understanding. Humans remain the domain
experts and the ultimate arbiters of what constitutes real insight. Thanks
to the field of human-in-the-loop (HIL) analytics, increasing attention
has been paid to integrating the human capacity for handling shifting
problems and insights with the computing power of machine learners.

Inspired by an ongoing collaboration with an investigative journal-
ism technology company, MuckRock (see MuckRock.com), we have
developed a technique to address a need for tools for non-technical
researchers to work with large sets of documents to efficiently develop
insights and stories. We learned from our collaboration that journalists
will often track narrative threads, i.e., elements of a story, through sets
of documents using spreadsheets, and record information about each
document as they read it. This method cannot scale to modern text
corpora, so we introduce an HIL technique that aligns with spreadsheet-
based workflows by anchoring interaction around a table view. Users
create their own columns to represent concepts or narrative threads. As
they mark relevant documents in these columns, a machine learning
backend automatically models the custom topic and fills in labels for
the user when possible (showing uncertainty). This draws attention to
the documents most relevant to the developing narrative so users can
focus on a limited range of “uncertain” documents, retrain, and iterate.
To help the sensemaking process, visualizations show relationships
between documents and between terms. We use the trained models in
producing the visualizations so the latest user feedback is incorporated.

In this paper we (1) explain our motivation and detail the approach
(Sect. 3), (2) explain the interactive machine learning techniques that
enable the interactive table (Sect. 4), as well as (3) how those learned
models are adapted to serve the user interface (Sect. 4). We present (4)
a prototype HIL system, DocTable, incorporating that technology to
streamline the process of developing narratives from large document
corpora (Sect. 5), and validation via (4) a usage scenario (Sect. 6), a case
study of expert feedback (Sect. 7), and machine learning simulation
experiments (Sect. 8).

2 RELATED WORK

This work is an application of human-in-the-loop (HIL) analytics to
the longstanding problem of text analytics. In this section we discuss
related efforts starting with other visual text analytics approaches and
applications in industry, then provide an overview of HIL systems and
some existing HIL text work, differentiating our own. Finally, we
explain the relevant machine learning references.

2.1 Visual Document Analytics
There is a long history of systems for visually analyzing document col-
lections. Jigsaw is a visual analytics system that uses coordinated views
to enable user-driven narrative building [56]. In-Spire utilizes a com-
bination of search, data tools and coordinated views to allow users to
extract narratives from document collections [63]. Analyst’s Workspace
is a system optimized for large, multi-display visual analysis of docu-
ment collections [5], emphasizing document and entity networks to tell
stories through coordinated multiple views. Text Insight via Automated,
Responsive Analysis (TIARA) [61] utilizes Latent Dirichlet Allocation
(LDA) [9] to map the importance of document themes over time in
a ThemeRiver [35] style visualization. TIARA also allows users to
inspect sender/receiver connections via a network diagram. These sys-
tems are driven by interaction with visualizations, and though machine
learning or natural language processing (NLP) algorithms may be used
in creating those views, there is not an interactive machine learning
component to capture interaction data to automatically improve models.
Heimerl, et al., evaluate methods using a classifier and clustering with
layouts of documents [36]. Hagerman, et al., use an adaptation of SVM
for text with an interface for labeling documents and showing their
predictions in a visualization optimized for news articles [34]. Our
approach includes a table interface designed for general documents,
as opposed to news articles, and organizes information in a table to
manage several models at once. The labeling does not require working
with a document layout, but the learned models influence the layout so
it can be refined as users provide additional feedback.

2.2 Application Areas
Significant work has been done in application areas of text analytics.
Within the industry of legal discovery there are an array of systems
intended to streamline the process of document discovery. Most of
these systems are focused on sophisticated management of large docu-
ment collections rather than investigative narrative building. A typical
work-flow involves: (1) data ingestion, (2) manual tagging and batching
of documents, (3) usage of information retrieval techniques to locate
tagged and batched documents in order to cross reference with other col-
lections. Typical examples of these systems include Everlaw, Logikcull,
and DISCO [18, 26, 45]. Some systems such as RAVEL incorporate
sophisticated coordinated views oriented toward exploratory visualiza-
tion [44]. Products such as Brainspace utilize interactive visualizations
as data ingestion techniques to narrow down document collections,
then allow users to apply machine learning techniques to discover ad-
ditional documents [12]. Their interaction paradigm asks users to tag
documents as responsive or non-responsive, and uses a proprietary
algorithm called Continuous Multi-Modal Learning to help improve
sorting. Instead we use metric learning, allowing us to leverage labels
efficiently and provide a flexible interaction and re-ranking mechanism
based on multiple user-created models simultaneously.

In journalism, there are more tools for analytic tasks like managing
documents. DocumentCloud [21] is primarily an organizational system
for documents that have been processed using Thomson Reuters’ Open
Calais, a service for extracting semantic metadata. It offers journalists
search functionality and entity visualization, as well as tagging and
annotation capacity. Overview [50] is designed as a complement to
DocumentCloud, offering users advanced interactive visualizations
generated via clustering algorithms as well as an API for writing one’s
own visualizations. These approaches stop short of leveraging machine
learning to facilitate the rapid comprehension of the documents they
help to manage.

2.3 Human-in-the-loop Analytics
Human-in-the-loop (HIL) analytics is a field devoted to getting the best
out of both humans and computers by facilitating their cooperation1.
For a deep discussion of work in this area and the ways human and
computer work together, we defer to frameworks by Keim et al. [42],
Sacha et al. [52], Endert et al. [25], and Brown et al. [14]. Essentially
the point is to use computers for their best attributes and humans for
theirs, combining raw computational power with the ability to develop
novel insight and adapt to shifting problems and goals.

Many HIL systems have been built, and they tackle a variety of
problems. There are different approaches, including explicitly allowing
interaction with machine learning algorithms, e.g. PCA [39], regres-
sion [47], and decision trees [59]. Another approach is to have the
user interact directly with a visualization of the data, in a way that
matches the semantics of their understanding as a domain expert, i.e.,
via semantic interaction [23]. This approach has been used for a variety
of domains including some outside analytics like image search [29]
and social group discovery [3]. Dis-Function is an example system for
generic numerical data that gives a projection of the data and allows
a user, by manipulating data points directly (observation-level interac-
tion [24]), to provide feedback on their relationships that is used behind
the scenes to update a model. This mechanism is used iteratively to
improve the model, leading to a better projection and an understanding
of what data features are important [15] (additional work on this gen-
eral problem includes multiple techniques [24, 43, 54]). Other example
problem spaces tackled with semantic interaction include ranking [60]
and network alarm triage [4].

There are tools using semantic HIL for text analytics. NLPReviz,
is built for clinical text data, i.e., electronic medical records. A user
has multiple columns of separate labels to fill out about the content
of different patients’ records, e.g., particular medical conditions. The
system uses support vector machines to attempt to fill in gaps, and

1HIL focuses on interactive analytics but is nearly interchangeable with
the related, broader fields of interactive machine learning and human-centered
machine learning.
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provides tools like visualizations of text content, model uncertainty
and label distribution to aid a human in fixing the predictions [58].
Though this sounds similar, we are providing the user with the ability to
create their own ad-hoc models of generic text data and use a learning
mechanism more suited to a small number of labels. ForceSPIRE [23]
is designed for sensemaking in textual data. It utilizes user interaction
with the spatial representation of data to steer the backend which learns
from these interactions and updates the spatial representation. Users can
implicitly re-weight entities via four semantic actions: repositioning
documents, highlighting text, search, and annotating. Bradel, et al.,
extend this to use multiple models directly in the spatialization of
documents [11]. This concept was flipped in a visual analytics system
that creates a spatialization of the terms instead of the documents [22].
Further work in the area includes a term spatialization with semantic
interaction of backend model learning based on moving words [13, 16].
That HIL term spatialization is related to this work, except that our
user experience and interactive learning focus on a table instead of a
spatialization, and we use a different backend learner.

With DocTable, we are working with unstructured text data, and
building a user-specified set of models with the intention of helping to
develop a narrative. The user creates new models to represent concepts
on the fly and defines them by giving positive and negative examples
from the text. There is no ground truth label for any documents (as
with, e.g., diagnosis). Instead we allow the user’s guidance to steer
the model-building, focusing on capturing their mental model of the
problem and providing recommendations accordingly. To this end,
models built by users are used to sort documents to help the user find
the most relevant material to develop their narrative. In addition, using
this type of model or collection of models to customize a visualization
of terms requires special consideration explained in Sect. 4.3.

2.4 Machine Learning
The machine learning approach adopted for DocTable is metric learning.
Metric learning does not fall neatly into either main camp of machine
learning (supervised or unsupervised), but it is well-suited to interactive
contexts. There are multiple variants of metric learning and it can
be run with fully labeled data (as a supervised technique), but a key
strength is its semi-supervised ability. By taking constraints rather than
labels, typically of the form “xi and x j should be very close together (or
far apart)”, metric learning can be flexible. Metric learning has been
used for ranking [46], retrieval [37], face recognition [17, 31], and HIL
systems [6, 15] among others uses (see metric learning survey [65]).

Metric learning can get substantial benefit from a small number of
labels [64], making it all the more suited to interactive contexts where
maintaining user attention is difficult. A downside is that in interactive
systems, any analytics has to be run quickly, and metric learning is not
typically cheap because in many formulations, all constraints are used
every time the model updates. Online learning algorithms work well for
situations needing a quick update to a model based on new information.
Fortunately, there is an online metric learning algorithm, LEGO [38].
We adopt LEGO for this work, using it to quickly turn around model
changes as users provide small incremental amounts of labels.

3 MOTIVATION, DESIGN AND APPROACH

In this section we explain the motivating problem and how our design
goals evolved from discussions with a collaborator in journalism tech-
nology. The main contribution of this paper is an interactive machine
learning technique, but our inspiration and part of our evaluation is
motivated by the challenges of this domain. We finish the section ex-
plaining how our overall HIL approach addresses these challenges and
design considerations.

3.1 Motivating Problem
This work is inspired by collaborators at a not-for-profit journalism
technology company, MuckRock, that supports journalists by gathering
large collections of public documents, often by assisting in filing Free-
dom of Information Act (FOIA) requests to government agencies. They
make millions of pages of documents accessible with tools for citizen
journalists, with a goal of increased accountability. In talking to our

contact, Managing Director Michael Morisy, we iteratively developed
the design by discussing drawings and diagrams and learning about
journalist workflow. The idea for the table component that anchors this
work came from the revelation that typically, journalists currently rely
on Excel. This situation surprised us, since the workflow they described
involved creating a spreadsheet with columns for topics of interest, and
manually filling columns as they read documents. While large news-
rooms may have access to fancier tools, these spreadsheets could be
used by anyone, with flexibility to have columns include tags or even
extracted values like the number of people involved in an incident to be
used as data in later analysis.

Our collaborator also provided us with a series of user stories to
summarize the challenges faced by investigative journalists. These un-
covered some of the competitive pressures faced, especially by smaller
news outlets or independent journalists. One unifying feature of these
stories was that, regardless of technical orientation, these investigative
journalists still rely on manual review of documents and generally use
spreadsheet software for analysis. Another insight for us was that this
particular audience is perfectly comfortable with complexity and nu-
ance, just not well-versed in technology. Specifically, they were happy
to engage with the details of abstract representations of their work,
as long as the specific technical details are not essential to using the
tool. We hypothesized that the ability to work through many documents
without the human capital available at a large organization could be
answered with interactive machine learning tools and began to iterate
design ideas. From these conversations we developed a clear set of
goals for an HIL approach:

G1 Enhance scalability over the spreadsheet baseline by assisting in
quickly organizing documents around user-defined themes.

G2 Use a familiar, table-oriented interface to reduce the learning
curve.

G3 Maintain access to document materials for specific review.

The HIL approach explained in the next subsection, and implemented
in the DocTable prototype, addresses these goals well enough that the
collaborator has begun integrating the technology into their own user
toolkits on their website.

3.2 Human-in-the-Loop Approach
Conceptually, we approach the challenge of developing a narrative from
a corpora of documents as a process of iterative interaction assisted
by model building and visualization. In this approach, we start with a
set of documents retrieved from the overall corpus via keyword search.
The user then begins the human-in-the-loop sensemaking process and
iteratively uses the visualizations and document content viewer to learn
about the documents, provide feedback through the table, and update
the model to get a renewed view of their data.

The loop proceeds through the following steps:

1. Documents are listed in an interactive table ordered by the back-
end machine learning model (at first, simply based on order in the
original search).

2. Force-directed layouts provide the user with overviews of key-
words and documents and their relationships based on the model
(once it is available).

3. The user creates table columns to represent concepts in their
sensemaking. With help from the visualizations and the table, the
user marks a subset of the documents as either relevant or not
relevant to their concepts.

4. This interaction generates an update of the backend metric learn-
ing model. The new model is used to label the rest of the table
rows relative to the user concepts (showing uncertainty), and up-
date the relationships between documents and between terms that
are shown in the visualizations to reflect the new user feedback.
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Fig. 2: This diagram shows the human-in-the-loop approach in
DocTable. The blue-outline items are interface components and in-
teractions between them are indicated by blue arrows. The green box
represents the models learned on the backend. Green arrows show
the flow between the models and the visual components, with each
user-defined concept (table column) controlling its own model. The
corresponding workflow is explained in Sect. 3.2.

5. The process repeats iteratively.

The feedback loop can be seen in Fig. 2, which shows the flow of
information from user to models and back again. The user continues
this process until they have extracted the desired information about
their documents.

4 USING METRIC MODELS IN TABLES AND SPATIALIZATIONS
FOR VISUAL TEXT ANALYTICS

To fulfill the HIL approach of Sect. 3.2, we must address how to learn
from user feedback with the table view, and then how the new models
can be used to update the table and visualizations.

4.1 Table Interactions into Metric Learning Constraints

The table interface has one row per document and only the columns that
the user specifies. The user creates as many columns as they like, each
one representing a concept in their sensemaking. (We ignore the other
type of columns in the prototype (see Sect. 5) in this section as they
do not contribute to the model learning.) For example, for a journalist
looking at public spending on events, their columns could represent
concepts such as if a document is about a local event, or discusses the
budget. Using the visualizations and reading documents, the user is
able to judge the relevancy of each document to each concept, and
check a box in the table indicating a positive or negative relationship.
This relevance feedback is then used to learn an updated model using a
metric learner.

Metric learning is a good match to this application because it works
well with small amounts of feedback (see Sect. 2.4). Commonly, metric
learners use constraints in the form of tuples, e.g. (i, j, together),
meaning points i and j should be the same class or close together.
To convert from user labels to constraints, we assume that, within
each user concept (column), documents marked as positive are similar
to other documents marked as positive, but dissimilar to documents
marked as negative. Each concept’s model is trained separately with the
following constraints for the metric learner: (1) a together constraint
for all pairs of documents the user checked positive, (2) a separated
constraint for all pairs where one document is marked positive and the
other negative. Notably absent are constraints for pairs of documents
sharing a negative label. This is because there are many ways that a
document could be irrelevant to a concept and the user semantics of the
negative marking should not be interpreted by the learner as feedback
that the negative examples are similar to each other.

4.2 Updating the Table With Metric Models
The new models must now be used to improve the table, specifically
through re-ordering the documents for relevance, marking them with
relevance predictions, and annotating them with the model’s degree of
certainty in its labels. The metric model is represented in the backend
by a square matrix of size equal to the number of features used to
represent the documents. Since even a relatively small document corpus
is likely to have a large number of terms, we do not use the terms
directly as our features as that would make the table update process
slow. Instead, we use feature extraction to reduce the feature space
by applying Principal Component Analysis (PCA) [40] to obtain a
manageable number of features p. The distance between any two
documents is the Mahalanobis distance between them using the metric
model’s matrix A (p× p) as2:

DA(xi,xj) = (xi−xj)A(xi−xj)
T (1)

Pairwise distances are useful in many contexts, but we need more
flexibility to incorporate the model into our table and visualizations, so
we use a factorized version to transform the data with respect to the
model. Using the Cholesky factorization, a matrix A forming the basis
of a metric learning model can be factored into the product A = LT L
of a lower triangular matrix with itself. It is equivalent to calculate
distances between points using A or first multiply data by L and then
use regular Euclidean distance [62]. This equivalence can be seen
thanks to the way that transpose is distributed over matrices, i.e., using
the fact that (XY )T = Y T XT for Equation 2.

DA(xi,xj) = (xi−xj)A(xi−xj)
T

= (xi−xj)L
T L(xi−xj)

T

=
(
(xi−xj)L

T
)(

L(xi−xj)
T
)

=
(

L(xi−xj)
T
)T (

L(xi−xj)
T
)

(2)

= DI(Lxi,Lxj) (3)

The result, in Equation 3, replaces A with the Identity, I, because the
model has already been included. Using the matrix L, we transform
the data such that distances between points are equivalent to the Maha-
lanobis distances, i.e., the data themselves now reflect the model.

To order the documents in the table, we calculate a mean document
vector of only the documents marked as relevant by the user. As a
surrogate for its relevance to the user’s concept, we calculate each doc-
ument’s distance to this mean vector. We also calculate the percentiles
of the documents’ distance to the mean. Documents in the twentieth
percentile are labeled as relevant (+), documents in the eightieth per-
centile as irrelevant (-), and all others as uncertain (?). The front end
uses these percentiles to order the documents, stably sorting based on
the mean percentile of each document across all model columns. Doc-
uments directly marked by the user as relevant or irrelevant are given
percentiles of 0 and 100 respectively to ensure they are always pushed
ahead of model-based recommendations. The consistent assumption of
DocTable is that the user knows better than the machine learner what
document are relevant, and therefore their choices are never overridden,
and always given priority over model results.

4.3 Using a Metric Model to Visualize Relationships
Another contribution of this work is how we combine multiple models
from user interactions to visualize data relationships in a customized
way. The document-document relationships are relatively straightfor-
ward, but the term-term relationships require a novel approach.

Each document is represented as a vector in the PCA-reduced feature
space, 1× p, transformed by the matrix L (see Sect. 4.2). The document
visualization uses pairwise distances to produce the edge weights of a
graph of all documents that can be visualized with, e.g., a force-directed
layout with a user-controlled threshold for edge strength.

2The square root is left out of the calculation for efficiency without conse-
quence because we are using these values only for comparison.



The calculation is not as straightforward for relationships between
terms, however. Documents are represented for computation as coeffi-
cients of the principal components from PCA, meaning the components
are acting like a set of terms, which we refer to here as PCA-terms.
Because the documents, and thus the metric model, are represented
in the PCA space, their direct correspondence to the original terms
is lost. Additionally, visualizing all the terms would overwhelm the
visualization, so we must reduce the set in the process.

In picking an appropriate subset of terms, we want to take advantage
of the learned model, so we start by subsetting the PCA-terms, which
are directly referenced by the model. We select a subset, size p′ < p, of
the entire PCA-term vocabulary of the corpus by thresholding based on
the weights on the diagonal of metric matrix A3. The ideal threshold
will depend on the data and can be determined empirically, or by using
a heuristic like a percentile.

Next, we consider the principal components matrix, P, which con-
tains the relationships between the original terms and the PCA-terms.
Specifically, P is the m× p matrix, where m is the number of original
terms and p is the chosen number of components, used to transform
the data to PCA space. For each original document vector x ∈ Rm, we
get the elements of PCA-space vector x′ ∈ Rp via the dot product with
each principle component, x′i = x ·pi, i = 1, . . . , p. This formula is
commonly written in matrix form as X ′ = XP, for X the n×m matrix
with all documents as its rows.

The rows of P represent the original terms, and the matrix contains
their relationship to the PCA-terms. We can add the weighting from the
model to this matrix to create the matrix W . Let vector a be the diagonal
of matrix A, the weights of all PCA-terms. First, use the weights in
a and apply a threshold to remove the elements for the least relevant
PCA-terms from a and corresponding least relevant columns from P.
The trimmed versions are a′ and P′, with p′ instead of p elements and
columns respectively. Apply the weights for each PCA-term from a′ to
the columns of P′ to create:

Wi j = a′jP
′
i j (4)

Note that this cannot be done simply by matrix multiplication with A
because of the dimension mismatch from trimming terms. In W , each
row is the representation of an original term based on a subset of the
principal components.

Finally, we must trim the set of terms, so we threshold again, now
based on the row values of W . We compute a relevance score for each
term:

ωi =
p′

∑
j=1

Wi j (5)

The terms with the top scores are selected (the ideal threshold will again
depend on the data), giving us τ weighted term vectors ti ∈ Rp′ . We
use Euclidean distance to calculate the pairwise distances, dist(ti, tj),
for visualization.

4.4 Using Multiple Models
The interactive table allows the user to generate multiple models, but we
do not want to complicate the interface with features to mix and match
subsets of models applied to the visualizations. The models being
created should all contribute to the same investigation and can work
together. To account for all the models from the table, we first combine
their matrices into a single metric that represents all in conjunction.
Averaging the matrices is not appropriate as we instead want to combine
the effects of the transformations of the data. Fortunately, as described
in Sect. 4.2, the matrices are used in a factored form to process the
data. We can stack these linear transformations for multiple learned
models. Specifically, we use the factored versions of each of the k user
models, Ai = LT

i Li, i = 1, . . . ,k. By multiplying the Li together, we can
use the usual version of the distance function (Equation 3), substituting
L = L∗:

L∗ = Π
k
i=1Li

3The off-diagonal elements of the matrix may improve distance calculations,
but the diagonal alone is often good enough and is easier to interpret [64].

Fig. 3: Document Viewer. When a PDF version is available it is used
for readability, otherwise this modal dialog contains raw text. The top
portion contains extracted entities, if available.

5 THE DOCTABLE PROTOTYPE

DocTable is a prototype implementation of the techniques discussed
in Sect. 4. There are three primary components: the search pane, the
table pane, and the visualization pane, plus a modal document viewer.
With these controls, users can find documents, create models of topics
to help build a narrative thread, and use visualizations that incorporate
those models to improve their understanding. The following sections
detail each of the main components, including interface features and
useful information about their implementations. Sect. 6 showcases the
core functionality of DocTable in an order that reflects the expected
workflow for users.

5.1 Initial State and Search
New sessions in DocTable (see Fig. 1) load with an empty search pane4

and table pane (Fig. 1 (c)). The search pane is the starting point for
all sessions as it allows the user to get a relevant subset of the whole
document corpus. After searching, users are given an ordered list of
results of the 50 documents most relevant to their query. Once users
have a list of results in view, they can click on an individual result to
render the document in the document viewer (see Fig. 3). Users can
either manually review documents in the document viewer and add
them individually to the table or batch add all of them to the table. They
may repeat this until they have found as many documents as needed.

Behind the scenes, as part of pre-processing the text data, a Docu-
ment Term Matrix (DTM) is constructed before the user’s session begins.
Using normalized token-frequencies via the popular term frequency-
inverse document frequency (TF-IDF) weighting approach [7], this
matrix represents which terms from the text are in which documents.
For a search, the query’s term-frequency vector is prepared and multi-
plied by the DTM to get a relevance matching score for each document
in the corpus. Search results are ordered by this score. In the current
prototype of DocTable, we use a corpus of documents our collaborator
retrieved from a Freedom of Information Act (FOIA) request to the FBI.
The resulting DTM has 13,471 documents and 84,169 unique tokens.

5.2 Document Viewer
DocTable includes a document viewer (Fig. 3) which can be accessed
from both the search and table panes. On clicking a document, the user
gets a scrollable modal window. The document viewer also functions as
a second method for adding documents to the table. If available with the
data, the viewer’s header includes a series of buttons displaying entities
associated with the document. Clicking one adds relevant documents
to the table.

5.3 Table Pane
The core component of DocTable is the table pane (Fig. 1 (c)). Once
a user has added documents to the table, they are presented with two
options for creating columns: Add Model and Add Filter.

4The search pane is not shown for space reasons, but it is straightforward.
It provides tabs to keep track of multiple search results, and the ability to add
results to the table.



For a filter column, the user specifies a string, and the column au-
tomatically indicates with a check mark if a document (row) contains
the specific term. These columns are intended as a simple tracking
device to spot documents in which specific words or phrases occur.
Model columns (Fig. 1 (f)) do not match based on the specific phrasing.
The provided string is an arbitrary name supplied by the user to rep-
resent the narrative thread they will associate with that column. Read
cross-column, the model column names compose a story of multiple
topics.

When a model column is added, the values default to the ? symbol,
indicating uncertainty regarding relevance. Using the filter columns to
spot initial documents to target, users then begin to manually review
documents. Users indicate document relevance to a particular column
(i.e., narrative element, theme or topic) by clicking on a cell to update
with the symbol - (“not relevant”) and the symbol + (indicating “rel-
evant”). Once the user has reviewed a certain number of documents
(currently set at 5), DocTable prompts the user to retrain the table.
However, users are able to retrain whenever they desire with the button
at Fig. 1 (d).

The table retrains based on the user’s manual classification, indicat-
ing on a per-model basis documents the model believes to be relevant,
irrelevant, and uncertain. User inputs are never overridden by the model.
On retraining, the table is re-ordered by the aggregate relevancy of a
document to the entire set of models. User inputs are given higher
priority than model updates and documents relevant to more models
will sort highest.

In addition to re-ordering the table by aggregate relevancy, table
updates employ a number of visual semantics to guide navigation of the
table (see Fig. 1 (f)). User inputs are in bold font to distinguish manual
review from recommendations made by DocTable. Additionally, cells
are color coded to indicate the model’s current certainty with darker
gold indicating stronger relevance and darker blue indicating stronger
irrelevance. The color space between these two endpoints is generated
from a CIELAB color space interpolator [19].

After retraining, users can then focus on documents recommended
by the model (either confirming or rejecting the model's recommenda-
tion) and retrain the table. Users can also export final results to .csv
format (Fig. 1 (g)). The updated view is focused on enabling users to
quickly iterate through documents resulting in a table completely sorted
by relevance to their entire narrative. The table still enables a tradi-
tional work-flow of manual inspection of documents but by responding
to minimal user interaction in order to update document's relevancy,
DocTable allows users to focus on documents with uncertain relevancy,
rather than manually reviewing every single one.

5.4 Visualization of Term and Document Relationships

There are three force-directed graph visualizations available, show-
ing relationships between entities (if provided), terms, and documents
(Fig. 1(b)). They all have the same essential features. Dragging and
dropping the points pins them, making it possible to explore the rela-
tionships as the force-directed simulation resettles. Clicking a point
marks it yellow and causes relevant documents to be highlighted in
the table viewer with color. Double clicking resets the pinning and
table highlighting. Mouseover text shows detail about the item. For
documents, the terms are shown. For terms and entities, documents
are shown. The entities view is shown in Fig. 1 and the documents
view is in Fig. 4. In Sect. 4 we explain the details of calculating the
distances between terms and documents. Using those distances, the
visualizations are a straightforward implementation in D3.

5.5 Implementation Details

DocTable is built on top of the Flask micro web framework [28]. The
interface is implemented with React.js [27] and D3.js [10]. AJAX
requests are sent via jQuery [57]. The backend model is implemented
in Python 3 with primary dependencies on numpy [49], scipy [41],
Gensim [51], and nltk [8]. The application was deployed as an internal
tool for our collaborator on an Amazon Web Services EC2 [2] instance
using NGINX [48], Supervisor [1], and Gunicorn [32].

Fig. 4: Document Force Directed view, showing relationships between
documents and the important terms in each document in a tooltip.

6 USAGE SCENARIO

As described in the previous sections, one of the most important and
interesting uses of this tool is in finding hidden nuggets of data about
a particular theme. As we put this tool into action on a database of
FBI files on individual Americans, provided by our collaborator, we
started with the idea of better understanding how two important Federal
agencies, the FBI and DEA, interact with each other. We uncovered
some key information which otherwise would not have been easy to
find.

Based on our understanding of FBI history, there were times in
the past (mainly during the Clinton administration) when there were
proposals to merge the DEA and FBI. We wanted to find documents
in the database that relate to this theme and extract some interesting
insights. After an initial search using the phrase “dea fbi merger”, we
had an initial set of documents to interact with. After reading through
several, we marked a few as relevant and a few as non-relevant and ran
the metric learner to reorganize the document set.

We then moved forward and started interacting with these documents
through the force-directed graphs. In particular the term-to-term force
directed graph seemed most instrumental in this particular exploration.
By moving around various terms in the graph, we were able to find
those nodes that were the most influential – determined as a function of
how many other nodes connected to them. While most of these “influ-
ential nodes” were simply terms like “New York”, “Washington”, and
“Clinton”, which were expected given the subject matter, we noticed
an interesting term – “Heriberto”. As we can see in Fig. 5, “Heriberto”
was a term connected to many other terms making it quite influential
and central to the document set we were exploring.

Upon searching the internet for “Heriberto” we quickly learned
that it is the name of a notorious Mexican drug lord who was active
around the time of the proposed FBI-DEA merger. He was somehow
related to the merger, which was an interesting find. Through DocTable,
we were able to quickly uncover this name, which was otherwise
buried in a massive stack of documents about the era. Reading through
that pile, Heriberto may not have stuck out at all, but with a term-
term force-directed layout based on the custom models about the FBI-
DEA topic, he quickly surfaced. Furthermore, since the force-directed
graph lists out important documents associated with this term, we
know the reference material that is our starting point for understanding
Heriberto’s role.

7 DOMAIN EXPERT FEEDBACK

We deployed our DocTable prototype to get feedback from journalists.
Four employees of MuckRock used the tool with one of their datasets, a
corpus of 13,471 documents from Freedom of Information Act (FOIA)
requests to the Federal Bureau of Investigations (FBI). There were
two men and two women with ages ranging from mid twenties to mid



Fig. 5: This view of DocTable during the usage scenario of Section 6 shows the table view with two positive document labels by the user in each
of the two model columns, and one negative label in congress. The visualization on the left is showing relevant terms, and leads us to discover
Heriberto, who is the only one connected to quite a few keywords.

thirties and experience in journalism ranging from about 5 to more than
10 years5 (median 7.7). Though some participants had done advocacy
or engagement work with artificial intelligence in journalism, none
have technical background in the subject. Some participants had seen a
previous prototype of a component of DocTable about six months prior,
but this evaluation is a case study, not a user study [53], so there is no
task performance analysis to confound. Each expert was given a tour of
the prototype and asked to work with the tool on their own open-ended
investigation of the data

The visualizations in DocTable immediately highlighted some fea-
tures of the data that the subjects were already aware of, like the fact
that many documents are actually email responses to FOIA requests,
as opposed to content provided by government agencies. For exam-
ple, a common type of document is a Glomar response, in which an
agency says they acknowledge the request but “can neither confirm
nor deny” the existance of the requested material. Names that are
involved in requests are often tagged as important terms in the visual-
ization, especially “hardy”, representing David Hardy, Section Chief of
Record/Information Dissemination Section (RIDS). After discovering
these issues, participants would select only documents that were not
response emails, and results got more interesting. In this section, we
break down the results by the main components of the tool (table builder
and visualizations), and then discuss some of the overall impressions
and understanding of machine learning in journalism.

The table builder was well received. One participant, asked during
the survey if the predictions it made were accurate and if they improved
with additional labeling said, ”Yes and yes... Pretty accurate, pretty
quickly. Used it a few times and it makes a ton of sense to me now.”
The participant noted that ”how quickly it was able to relatively smartly
start arraying the data based on not that many entries was really good.”
The fact that it showed uncertainty was also appreciated.

The reception of the visualizations was less uniform. As noted in
Sect. 3, our design was an attempt to push the journalists toward a more
scalable approach than tables. The participants had not worked with
force directed visualizations, so they were figuring out the interaction
as well as the semantics at the same time. One participants first reaction
was that it was ”more theoretically useful than useful.” Another partici-

5Given the size of the company, giving exact numbers of years could poten-
tially identify individuals.

pant understood the point and the interaction immediately, explaining it
was “my favorite feature, seeing the ties visually, ... I think that was the
most useful thing, just seeing that visualization. I’m a visual learner.”

Initially, the documents view was crowded and the participant did not
see the benefit, but with some interaction and explanation, they looked
at the terms associated with a group of documents and had a moment of
insight, “Oh, it’s all Comey memos. Okay, that makes sense... could be
really useful.” Another subject preferred the documents view noting it
was “helpful to see the ties instead of going through the documents one
by one.” Of the term-term visualization, one participant observed the
terms were “mostly people who are involved.” We were happy to see
that the model was automatically emphasizing the relevant people, in
line with our expectations given the simulation experiments described
in Sect. 8.2. In the end, the collaborator was impressed enough to
devote resources to integrating the technology into their public web
platform, and anticipate making the functionality live by 2022.

8 QUANTITATIVE EVALUATION

The usage scenario (Sect. 6) and expert feedback (Sect. 7) demonstrate
the value of our approach, but we evaluate the effectiveness of the
underlying machine learning algorithms for this interactive context
with machine learning experiments to get a quantitative analysis.

8.1 Evaluation of Interactions’ Effect on Models
This evaluation quantifies the ability of DocTable to bring the most
relevant results to the top. We used a programmatic, experimental
design on a labeled document corpus, where the label (or category)
of the document is used as a surrogate for the concept that the user
is attempting to find. Using labels to simulate human interaction is
a common evaluation tool in areas of machine learning where model
building is dependent on human feedback, like active learning [55]. It
provides a consistent way to estimate user behavior, so we avoid noise
in that basic element of the experiment. In this approach a label is
chosen to be the topic of interest, and the relevancy of a document is
solely based on if its label matches.

In these experiments, we simulate iterative interactions and see how
they affect the document ordering in the table. We compare the ordering
produced by DocTable to the document ordering generated when the
user simply moves relevant documents to the top. Multiple experiments
were conducted using different search terms and the performance was



Concept: vegetable oil. Search terms: “food soy fats soybeans vegetable” on the left and “food soy fats” on the right.
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Concept: Foreign currency exchange. Search terms: “global market currency” on the left and “global” on the right.

0 10 20 30 40 50
search result order

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

(e)

6 8 10 12
documents marked

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

 a
t 1

0t
h 

re
su

lt

(f)

0 10 20 30 40 50
search result order

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

(g)

6 8 10 12
documents marked

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

 a
t 1

0t
h 

re
su

lt

(h)

Fig. 6: This figure shows the results of the quantitative evaluation (see Sect. 8.1) of the DocTable mechanism to evaluate how it improves the
order in which documents are presented to the user in the table. There are two different target concepts, vegetable oil on the top row and foreign
currency exchange on the bottom. For each concept we have chosen two sets of search terms. For each search term, there is a pair of graphs. The
left graph of each pair (a, c, e, g) shows average precision across experimental runs versus position in the simulated table results (also called
the search result order in reference to information retrieval). The right graphs (b, d, f, h) show how the number of labels provided by the user
impacts the quality of the table results, using precision-at-n (for n = 10). Legend: The red line is the performance of putting positively
labeled examples at the top of the list, and the blue line represents DocTable’s performance. The green dots on the precision-at-n graphs
show at what index in the original search result the positive labels were located (the vertical axis value is constant).

evaluated with precision. Precision, which is the ratio of correctly
predicted positives to the total number of possible positives, ignores
the model’s accuracy at predicting negatives. It is commonly used
in information retrieval for search results. When used to evaluate
an ordering, like the results of a search query, precision gives the
proportion of the results that are relevant. Because the top results
of a search are most important, precision-at-n, where precision is
calculated based on the top n results, can be a more focused measure.
Our comparisons between baseline and the DocTable approach over
multiple datasets and random trials provides an understanding of how
the combination of an online metric learner with user interaction, rather
than user interaction alone, can result in a better table view.

8.1.1 Methodology

We chose the ModApte subset of the Reuters-21578 dataset [20], a
collection of 10,766 news articles, each belonging to one or more of 90
categories. Each experiment broadly involves (1) identifying a small
set of search terms that are deemed relevant to a document category,
(2) retrieving search results for a combination of these terms as if they
were used as a query in DocTable, (3) simulating user interaction with
the resulting document set by marking a subset of these documents
as relevant or non-relevant, and (4) comparing the variation in the
precision of the search results before and after learning is applied.

The search terms related to a concept were selected by manually
scanning the overview section in the associated Wikipedia article (cho-
sen words are shown in Fig. 6). This mimics a user’s approach to
finding documents with DocTable, where they may not have a full
picture but, instead, a general idea of the kind of documents they are

trying to uncover. Next, we assume the user batch adds all documents
from search and uses DocTable, applying correct labels to a random
subset based on the ground truth from the data.

We run experiments with multiple searches and multiple sets of
documents. We generate all possible combinations of the selected
search terms and use each combination as a query to evaluate. For each
query, we take the first 50 search results and randomly pick a subset
to label. We test subsets of sizes 5 documents to 15 documents in
increments of two. For each of these document sets we determine two
different orderings to compare: (1) the search order modified such that
the positively labeled documents are at the top, and (2) the ordering
that would appear in DocTable, based on moving positively labeled
documents to the top and using LEGO to try to improve the ordering of
the rest.

Note that because of the randomization involved in the process, we
repeat the entire process of picking, labeling, learning, and ordering ten
times in order to obtain a more representative sample. Since constraints
can only be generated when there is at least one document marked as
relevant, we discard all those runs where there are no relevant docu-
ments. All values shown for precision and precision-at-n are averages
across all experiments conducted for a particular search query.

We visualize the results of these experiments two different ways.
For each search query we consider (1) how the precision is affected by
the number of results shown to the user, and (2) how well DocTable
performed compared to pure labeling as a function of how many labels
a person had to provide. In the results of Fig. 6 there are two category
labels making up the rows. For each category we show two search
queries, each with a pair of graphs. The left plots of these pairs show



precision versus the position in the search result order (table order) at
which it was calculated. These plots are a common way of looking
at precision, since the total number of results affecting the precision
calculation is not reliable across datasets (or queries). Precision itself
falls as the number of results shown increases because later results
are less likely to be relevant to the query. By plotting the precision of
the ordering in DocTable compared with that of pure labeling, we can
evaluate the overall strength of the retrieval. The green dots represent
where in the baseline search (without simulated user input) the positive
matches against the label occur. This information gives context to the
changes in the precision values moving to the right in the graph.

The right plot of each pair demonstrates how DocTable can help a
user find relevant documents by showing the effect on precision-at-n
of increasing the number of labels. This test is closest to evaluating
DocTable under usage conditions because it aims to show how LEGO
magnifies the improvement gained from user effort. Specifically, we
plot the precision values at the tenth row of the table of each of the
scenarios: using user labels only (i.e., moving relevant, labeled docu-
ments to the top), and using DocTable’s model building functionality
to augment labeling efforts.

8.1.2 Results
Although we ran this experimental process across a wide range of
document labels and query combinations, we show the results for two
selected categories of documents, “veg-oil” and “money-fx”. Both of
these categories demonstrate a case where the label was not a simple
word we would expect in all relevant documents. Additionally, we
chose labels with a relatively small number of relevant documents so
that there would be some challenge in finding them. The plots in Fig. 6
show the results for these experiments. We have selected two queries
to show in Fig. 6 for each category. For each of these categories, we
evaluated multiple queries, as detailed above. The resulting plots were
generally comparable and the results positive.

In plots (a), (c), (e), and (g) we see that the precision line for the
scenario where LEGO is used shows a higher value, especially with
moderate values of the x axis. This suggests that DocTable is able
to create a better ordering of the documents. All x axes start at one
because of the constraint that we have at least one positive label in our
test set.

In plots, (b), (d), (f), and (h) we see a direct comparison between the
DocTable and raw user labelling. The x axis represents how much work
is involved for the user, i.e., how many documents they have marked.
We can then see how DocTable is able to get more relevant results into
the top of the table for a given amount of user effort.

Overall, this evaluation shows that the DocTable approach can help to
impose a better ordering on a document set retrieved by search. Though
the results displayed represent the typical behavior in our experiments,
there are two cases we identify when applying our technique does
not help. First, as is the case with any machine learner, is when the
pattern to be learned cannot be represented by the type of model being
used. LEGO is a well-vetted algorithm, but some themes will not be
represented well by a linear model of the terms. For example, LEGO
can capture when two documents share frequent usage of a set of
words, but not if they were written at similar times. Relationships like
being written by different people are not explicitly possible, but may
be captured by differences in vocabulary between writers. Another
situation in which DocTable performs less well in our evaluation is
when the original search produces high quality results, i.e., relevant
documents are plentiful and sorted to the top of the list. There is not
much room for improvement, so LEGO may have little effect. It is
possible it will worsen ordering, possibly due to lack of negative labels.
When used in an interactive setting, this may not be a problem because
it means the theme being investigated was easily represented by a
search.

8.2 Evaluation of Model Influence on Visualizations
To evaluate the model influence on the term and document force-
directed visualizations we used a similar experimental setup as above,
again using the Reuters dataset. We chose a theme corresponding to a

category label in the data, picked a related term to use as a search word,
and then simulated interactions with the search results. Specifically, we
choose documents randomly and supposed the user would label them
based on the category label. Following the process in DocTable, the
labels are used to create constraints and the constraints are used to learn
a metric model with LEGO. This model is used to generate the force-
directed graphs. Since the model reflects the simulated interactions,
we can evaluate the capability of our method to reflect changes to the
model in the visualization by comparing pre- and post-model versions
by visual inspection.

We chose the category label “trade” from the data and used the
related term “deficit” as a search term. The 50 most relevant documents
from the search were picked for interaction in the table. Ten were
randomly chosen to label and marked as either “relevant” (if they had
label “trade”) or “non-relevant” (otherwise).

Fig. 7 shows the force-directed layouts generated using the Fruchter-
man Reingold algorithm [30] as implemented in the Python NetworkX
package [33]. In the document visualizations, we show the 20 most
significant documents and replaced the document names with their
labels. This way, looking from (a) to (b) in the figure, we can see that
applying labels has quickly shifted the emphasis so that we are seeing
documents labeled ‘trade’ in the center of the group.

In the case of the terms force-directed visualization, Fig. 7 (c) and
(d) show the affect of applying labels in the same manner. Although
there is not much change in the terms themselves, we do see that their
relative positioning has changed. For example, certain terms such
as “imports” and “adjusted” have converged, indicating that there is
a stronger relation between the two words based on interaction with
DocTable. Further, the two graphs show that the term “income” is
consistently detached from the main word cluster, indicating that it is
likely unaffected by the model. In addition, the model has also increased
the number of the terms pushed away from the main clustering. Given
shifts to the layout in DocTable, the user would then look at documents
and investigate relationships, hoping that the updated model helps home
in on useful topics and content.

(a) Projection of Documents with No Metric (b) Projection of Document with Metric

(c) Projection of Terms with No Metric (d) Projection of Terms with Metric

Fig. 7: This figure shows examples of force-directed visualizations
from our experiments to systematically verify the model was affecting
the output. Outlines in (c) and (d) help emphasize the changing groups.
See Sect. 8.2

.



9 DISCUSSION AND FUTURE WORK

The DocTable prototype was a helpful prototype to assess the utility
of our approach to using interactive machine learning to help work
through large text corpora. There is no shortage of interesting future
work to pursue. Aside from interface features, there are many questions
about the core interactive machine learning technology we can explore.
For one, there are unexplored opportunities to learn from interactions,
e.g., using interactions with the visualizations. Another opportunity is
to switch our dimension reduction of the text data from PCA to Latent
Dirichlet Allocation (LDA) [9], which would give us a similar vector
space, but tailored for the problem of topic extraction in text.

From our understanding of the journalists’ needs, they would be
interested in tools to help understand the workings of the models better.
They are not necessarily interested in the mechanics of the machine
learning, but how to interpret what each model represents. Tools to
describe and edit models could go a long way to assist comprehension
and therefore trust. Further, this understanding will be important if
people want to share models. For example, developing models that are
useful for understanding policing based on data from Texas would not
be helpful to an analysis in Washington state if one of the main salient
features was the term ‘Houston’ (this is not a real example). A model
might get good results on the Texas data by taking advantage of the
name of a struggling city, but to generalize, the user needs trust and
understanding.

10 CONCLUSION

In this paper, we presented interactive machine learning mechanisms for
text data and a prototype demonstrating them, DocTable. We described
how we designed DocTable with inspiration from our collaborator in
journalism and used a usage scenario to show how it can be used to
quickly arrive at interesting information hidden in large data. We also
validated the technique with domain-expert feedback on the prototype
from our collaborators. Our final evaluation was a series of simulation
experiments to test the machine learning mechanisms to conclude they
can use small amounts of feedback in our prescribed manner to improve
models about concepts in text data. The techniques presented in this
work can be applied to model learning and visualization for text corpora
in a broad array of application areas.
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